3: The Structure of Data

Chapter 3. The Structure of Data

16

In this chapter, the concepts of A+ dataand the vocabulary used in describing them are discussed first. Then
some A+ primitive functions for creating and indexing arrays and for inquiring into their characteristics are
introduced. |n these sections a number of examples of arrays are given. Finaly, certain classes of arrays
which are useful in the description of A+ functions are treated.

Concepts and Terminology

The data objectsin A+ are arrays, which can be visualized as rectilinear arrangements of individual values.
Anindividual valueinanarray iscalled an element. Inthesimplest arrays, the elementsareeither all numbers
or all characters. A number or a character isitself an array, of the most elementary kind.

In the rectangular visualization of an array, each set of parallel edges defines adirection. Corresponding to
each of these directionsisan axis. The axes of an array are ordered. In the visualization of an array with
three axes, the first axisis directed away from the viewer, the second is directed downward, and the third is
directed to theright. A two dimensional display of an array with three axes shows it as a series of planes
arranged vertically, representing cross sections perpendicular to the first axis. Theterm leading axesis used
for any set composed of all the axes from the first up to some particular axis, inclusive, and trailing axes for
any set composed of all the axes from some particular axis through the last one.

An array with no axes, necessarily consisting of asingle element, iscalled ascalar. All elements of arrays
arescalars. Arrayswith oneaxisare called vectorsor lists, or, if character, strings. Arrayswith two axesare
called matrices, and sometimestables. A set of elementslyingalong, i.e., paralel to, thefirst axisof amatrix
iscalled acolumn, and a set along the second axisarow, just the same asin ordinary usage for tables. These
terms are al so used for elements along the two trailing axes of arrays with more than two axes.

Dimension, Shape, and Rank

The length of an axisisthe number of elements lying along any one of the edges defining that axis. This
length isalso called adimension, so an array has as many dimensions as axes. (Theword dimension issome-
times used as a synonym for the word axis, but not in this manual.) The vector composed of the lengths of
all axesof an array, i.e., the vector of dimensions, is called the shape of the array. The ordering of the dimen-
sionsin the shape is the same as the ordering of the axesto which they correspond. The total number of
elementsin an array can be found by multiplying together all the elements of its shape.

An array can be empty, that is, it can have no elements at all. An empty array can have any humber of axes
except zero, which is disallowed, essentially because you can’t have an empty container without a container.
At least one of the dimensions of an empty array is equal to zero.

Therank of an array isthe number of itsaxes, and thereforeit isalso the number of elementsinitsshape, i.e.,
thelength of itsshape. A scalar has an empty shape—its shapeisavector that has no elements—and itsrank
is0. (Incidentally, when all the elements of an empty vector are multiplied together the result is 1, by con-
vention, so that the usual formulation for the number of elementsin an array a—namely, «/ a —worksfor
scalars also.)

Every element of an array can be referenced by a set of coordinates called indices, to retrieve the value of the
element or to giveit anew value. Thereisoneindex, or coordinate, for each axis, and A+ definesits value
to be an integer between zero and one less than the length of that axis, inclusive. The number of indices of
an element in an array, then, equals the rank of the array.

Some computational languages use the word cell as a synonym for element, but A+ does not (except in con-
nection with the displays created by s, the screen management system): cell is used in connection with the
partitioning of an array, as defined by a set of leading axes. In practice, multidimensiona arrays are com-
monly viewed as partitioned into collections of lower dimensional arrays. For example, a numeric matrix

A+ Language Reference November 2000

3. The Structure of Data

containing bond prices may be organized so that the rows are time series of prices for bonds, with one row
for each bond of interest, while the columns are collections of prices at particular times. For some calcula-
tions the rows would be emphasized, while for others, emphasis would be on the columns. One view
represents a partition of the matrix into a collection of row vectors, and the other into column vectors.

A+ emphasizes partitions where the lower dimensional arrays lie along a set of trailing axes. The lower
dimensional arrays that comprise such a partition are called cells. The complementary set of leading axesis
called the frame of the partition that holds the cells; the cells are said to be in their frame. In the case of the
numeric matrix of bond prices, the row vectors are the cells of rank 1, and the first axisis their frame.

Every set of leading axes defines a partition into cells for which it isthe frame. The set of all axesisapar-

ticular set of leading axes, and therefore defines apartition. Sincethere are no axesleft for the cells, the cells
must be the elements of the array; the A+ notion of cell, then, includes the more common one. At the other
extreme, the array itself isacdll, i.e., apartition of itself into one subarray. In this casethe cell takesall the
axes and therefore the frame has no axes.

A cell consists of all those elementsthat have one particular set of indicesfor the leading axes that define the
partition, and all possible indicesfor thetrailing axes. The entire cell can be selected by specifying only the
particular indices for the leading axes. Those leading axes are the frame of the partition, and therefore the
frameis, loosely speaking, an array of cellsthat can beindexed by valid indices of them. A partition creates,
then, aview of an array asaframe of cells. Thereismore about framesand cells, including several examples,
later in this chapter. The“Dyadic Operators’ chapter, and especially its“Rank Deriving Dyadic” section
(page 116), has afurther discussion of this subject, with examples.

One partition plays a special rolein A+, the one defined by thefirst axis alone; the cellsfor this partition are
called theitems of an array. Every array can be regarded as a vector of items, and many A+ functions look
at themin just that way. In such acontext, ascalar isregarded as having a single item, namely itself.

Type and Nesting

Another characteristic of arraysistype. Inasimplearray (definition later), al elements have the same type,
but a nonsimple array can contain elements of several different types.

The most common simple arrays are numeric and character. Every element of asimple numeric array isa
number, and every element of asimple character array isacharacter. Numeric arrays can be of either integer
or floating point type. These two types correspond to whole numbers and fractional (sometimes called dec-
imal) numbers. A+ numeric primitive functions applied to integer arrays may automatically convert their
argumentsto floating point, like the Matrix Inverse function, or may attempt to produce an integer result, like
Add and Subtract. If an overflow occursduring thisattempt, thetype of theresult is changed to floating point.

The type of asimple array may also be symbol or function if it is nonempty, or null if it isempty. A symbol
is acharacter string represented as asingle scalar; it is denoted by a backquote followed by the string, asin
‘sym . A function expression, e.g., or +.« , and afunction scalar, e.g., <{-} , both have type function.

While the elements of arrays are often just individual numbers and characters, an element of an array can be
an encapsulated multi-element array. That is, any array can be enclosed to become a scalar, and this scalar

can be an element of another array. Also, any enclosed array, except afunction scalar, can be disclosed, in

order to work with its contents. (A function scalar isan enclosed function expression. The operator Apply,

given afunction scalar, produces the underlying function expression.) Anarray that has an enclosed element
other than afunction scalar is called nested, and one that has no enclosed elements except function scalarsis
called smple. A function scalar issimple, but an enclosed function scalar isnested. Any nested array is nec-
essarily nonempty, being or containing ascalar.

A simple scalar symbol or function scalar can be an element of anested array. In order for data whose type
is character, integer, floating point, function, or null to appear in a nested array, however, it must first be
enclosed. Clearly, any nonscalar array must be enclosed before being inserted as an element in another array,
since the elements of all arrays must be scalars.

A+ Language Reference November 2000 17

3: The Structure of Data

18

When an array other than a function expression is enclosed, the resulting array is a scalar of type box. The

type of anonscalar nested array isthetype of itsfirstitem. Since anested array can contain elements whose
types are box, symbol, and function, itstype can be any one of these three. The disclosure of abox scalar, of
course, can yield an array of any type.

Any empty array issimple, becauseif it were nested, it would contain an enclosed array. An empty array that
isreshaped or selected from a character, integer, or floating point array is of the sametype. Empty arrays of
these three types can a so be produced by explicit type transformations from empty arrays of thesetypes. The
type of an empty array of symbols, functions, nulls, or boxesisnull. The empty vector whose typeisnull is
called Null or the Null; it can be represented as () .

Thereisalso atype called unknown, to guard against weird cases that might arise. It will not be mentioned
further, except in the description of the Type function.

Creating Arrays

A+ provides direct ways to specify constant arrays. A list of numbers separated by blank spacesis one
description of asimple constant numeric array. For example, the constant

10 2.3e-2 34.156

isafloating point array with one axis, of length three. The element atindex 0is 10, atindex 1is.023, and at
2is34.156. The expression with e means the number on the left times ten to the power shown on theright.
If you omit the blanks between numbers—a poor idea indeed, since it would make your code very difficult
to read—, A+ will give you a numeric vector, but probably not the one you intended. If anumber is being
parsed and a character is examined that can’t be part of the number, then anew number is started if the char-
acter could begin anumber. For instance,

1le-3.5 40.358.62.7 isread by A+ as0.001 0.5 40.358 0.62 0.7

Simple symbol vectors can be written similarly, and blanks are not needed. One of length fiveis
‘syml ‘sym2 ‘sym3‘sym4‘sym5

It is also easy to describe simple constant character vectors. For example,
axrTvw’

isacharacter array with one axis, of length six. Theelementsat indicesO, 1, 2, 3, 4, and 5 are, respectively,
a’ X T 'V Jand’'w . Theempty character vector can bewritten most easily as” —just two
guotation marks, with nothing between them.

A nested vector can be described conveniently by a strand, a parenthesized expression in which the vector’s
elements are separated by semicolons. Enclosure of each element isimplied by strand notation. For example,

(‘sym; +;1 2 3 4; 1.7 3.14; 'example’;)

isanested vector of length six. The blanks after the semicolons are not required, but usually promote read-
ability. All of its elements except the second are of type box; the second isasimple function scalar. The
types (lengths) of its elements when each is disclosed are: symbol (a scalar), function (ascalar), integer (4),
floating point (2), character (7), and null (0). The absence of an expression in any position of the strand
impliesa Null.

Arrayswith morethan one axis can be formed using the dyadic primitive function called Reshape and denoted
by (rho). For example, the result of the expression

23 'axrTvw' @ Enter thisin an A+ session, and press Enter.
axr a Thisrow and the next display the result.
TVw a8 Text following “2” isacomment.

A+ Language Reference November 2000

3. The Structure of Data

isan array with two axes—amatrix. Theleft argument of Reshapein thisexampleisavector, specifying the
shape of theresult. Theindex of an element in the matrix isapair consisting of oneindex for axis 0, and one
for axis 1. For instance, the element 'r' isindexed by the pair O, 2.

The monadic primitive function called Interval and denoted by (iota) is somewhat like Reshape. It creates
arrays of any specified shape whose elements are the integers 0, 1, For example,

17 a Simple vectors are always displayed horizontally.
012345678910111213141516

isan array with one axis. Notethat thisarray has 17 elements, and the index of thei-th element isi for every
i from O to 16.

The Interval primitive can also create arrays with more than one axis. For example:

235 a Enter thisin an A+ session, and press Enter.
0 1 2 3 4 & Thesesevenrows (oneblank) show the result,
5 6 7 8 9 2 whichisequato235 2«3«5
1011121314 2 (which could bewritten2 35 2«3«5).
a A blank line separates planes. If there were afourth axis,
1516171819 2 two blank lines would separate subarrays corresponding to
2021222324 @ indices along the first axis, and single blank lines between
2526272829 @ subarrays corresponding to indices along the second axis.

The empty integer vector ismost easily written 0 and the empty floating point vector 0 0. (decimal point).
Indisplays, al empty arrays occupy one (blank) line, except the Null, which occupies no display spaceat all.

The function Enclose, denoted by <, isused to enclose arrays; < isused also to indicate enclosure in displays:

<25 a8 Much like the previous example, but an enclosed scalar.
< 01234 =@ The < is used to indicate enclosure.
56789 a< isdisplayed only at the start of each enclosed array.

Strand notation can be combined with Enclose:

(123;<123;abc’;+;'smbl;) 2 The last element is Null.
< 123 a Strand encloses the simple vector.
<< 123 a Strand encloses the enclosed vector.
< abc a Enclosed character vector.
< + a Enclosed function expression.
< ‘smbl a Enclosed symbol.
< 2 Enclosed Null.

Warning! InVersion 2, sometimes < is displayed to indicate that what follows is a symbol; then no back-
quote (*) is shown for the symbol.

Indexing Arrays

A+ provides primitive functions to access the elements of an array. One such function is denoted by the
bracket pair [| andis called Bracket Indexing. For example, using arrays displayed in the previous section:

‘axrTvw'[4]
v

‘axrTVvw'[5 0 1]
wax

(‘sym;+;1 2 3 4;1.7 3.14;example’;)[2]
< 1234

A+ Language Reference November 2000 19

3: The Structure of Data

20

(239)[0:1;3]
8

An omitted index implies al permitted indices for that axis, so one can easily obtain arow and a column:

(235)[00;] * Thefirst row.
01234

(235)[0;;4] @ The fifth column of the first plane of the array;
4914 a vector result.

For a3-dimensional array, an item isamatrix. In Bracket Indexing, a semicolon may be omitted when al
theindices following it are omitted, so one can index an array asif it were avector containing the array’s
items:

(2351 =@ The second item: any element of itis
15161718 19 a(235)[1:j:K] for somej andk.
2021222324
2526 27 28 29

More generally, one can index an array of rank r asif it were an (r-n)-rank array (frame) of rank-n cells. Say
one has afive dimensional array; one can view it as athree dimensional array of two dimensional cells:

(45623)[0;0,0] 2 Any element of the first cell is
012 a(456 2 3)[0;0;0;j:K] for somej , k.
345 a8 Thefirst three indicesindex the frame.

One more example demonstrates the power of working with items, frames, and cells. For thisexample, a
small part of the capability of the primitive function Take () and the primitive operator Rank (@ must be
explained. For positive n, the expression n a producesthefirst n itemsof a. The derived function @1
applies Taketo all cellsof rank 1initsright argument, i.e., to al rows, whose items are elements. Taking a
certain number of elementsin each row is equivalent to taking a certain number of columns. Thusthe fol-
lowing expression takes three rows (items of amatrix) after taking five columns of afive by ten matrix:

35@1 510 2 3 (5(@1) 510) isequivaent.
0 1 2 3 4 a
1011121314 a Take 5 columns.

2021222324 a Take 3 rows.

Inquiring about Arrays

Shape and Rank

The primitive function denoted by the monadic (i.e., one argument) form of the symbol (rho) is called
Shape. It produces the shape vector of its array argument. For example, 23 isthevector 2 3, and
‘axrTVw' isthe one-element vector whose only element is 6.

Theresult of a, adouble application of Shape, is aone-element vector whose value istherank of a. In
particular, the element of the one-element vector 36 or 'X’ isO; separately entered numbers and char-
acters have no axes, and their rank is therefore O; they are scalars.

Type and Depth

The Type monadic primitive function (') produces the type of its argument, asascalar symbol. First, the six
types of simple arrays.

'25
int

A+ Language Reference November 2000

3. The Structure of Data

'2.71828 3.14159

‘float
"axrTVw’
‘char
“pp ‘1l
‘sym
{+} @ Parser needsbraces as hint that + isan arg.
‘func
'<{+} & A function scalar is also of type ‘func
‘func
‘0
‘null
Next, the three types of nested arrays. The type of a nested array is the type of thefirst item.
'<234
‘box
“rl,(;2.7 3.1) 2 Comma concatenates two args.
‘sym
'(+) a A function scalar.
‘func

Last, the four types of empty arrays.

‘char

"0
‘int

'012 10.1
‘float

04 (+;-«;)
‘null

The Depth monadic primitive function (%p produces the depth of nesting of its argument, as a scalar integer.
The depth of amulti-item array is the greatest of the depths of itsitems. The depth of afunction expression
is-1, by convention, and the depth of afunction scalar, which is an enclosed function expression, is 0.

% 234 a Simple
° %o<’abc def’ a Result of Enclose
' %0(2 3;+;'a’'b'c) 2 Enclosure implied by strand
' %o(<2 3;=;'a’b’c) 2 Strand with enclosed element
? %o(1 2;(3 4;(5 6;);7);8) 2 Strand in strand in strand
3

A shorter definition of asimple array is any array whose depth does not exceed 0. A nested array, which is
any array that is not simple, can be defined similarly as one whose depth is at least 1.

Pictorial Representation

A file that shows two dimensional representations of datais distributed with the Version 2 A+ system and
resides (after loading) inthe disp context. Hereisasample of its use:

$load disp
disp.disp 2 3 (‘ab’;'abc'def; 2 4; 1.1 2.2;;«)

A+ Language Reference November 2000 21

3: The Structure of Data

22

<
ab “abc ‘def " "0123”
- e . 74567
1122777 "«

Thisfileisnot distributed with Version 4. A more up-to-date versionisavailablein/common/a/disp.+
Itisused asfollows:

$load /common/a/disp
disp.disp 2 3 (‘ab’;'abc'def; 2 4; 1.1 2.2;;«)

+3 +
2+2-+ +2------- + 4 +”
“ab” “abc'def"2012 3™
T+ +omme +45677
” S [— +
+2--mmmm- + 40 +0+

11227 +° «

+femmmee- + ++
+ +
Consult the ASCI|I text file /common/a/disp.doc for further information.

Subtypes and Supertypes

Slotfillers

A special form of nested array called a slotfiller isrecognized by certain primitive functions and toolkits. A
slotfiller isatwo-element vector (sym;val) . symisasimplevector or scalar of distinct symbols. val has
the same number of items as sym (recall that a scalar has one item). It can be either any nested scalar or any
vector each of whose items either has a depth of at least 1 or is afunction scalar that is the enclosure of a
defined function. Thus primitive functions can appear inval only when they are enclosed at least twice, i.e.,
as enclosed function scalars. A dotfiller can be thought of asadictionary of keys (with no repetitions) and
values.

Thereisaway to test whether avariable or an expressionisadlotfiller or not: _issfx islif x isadotfiller
and Oif itisnot. Cf.the“lIsaSlotfiller” section, page 148, in the “ System Functions’ chapter.

Examples of dotfillersare:
(‘small ‘medium ‘large ‘super;(16;32;64;72))
(‘a;<97)
and
(g T'w;(f;g:<{+})
wheref and g are user-defined functions, and + is enclosed by < and the strand; but not
(‘9 T'w;(+;-1«)
since nonnested primitive functions are prohibited in dlotfillers.

Recall that when A+ displays a nested array, it uses an Enclose symbol (<) to indicate the beginning of the
display of each nested array. It indents subarrays appropriately to show their total depth of nesting. Thefirst
sample dlotfiller is displayed as:

A+ Language Reference November 2000

3. The Structure of Data

< ‘small ‘medium ‘large ‘super

<< 16
< 32
< 64
< 72

The Pick function (page 82) can extract values from dotfillers:

‘medium (‘small ‘medium ‘large ‘super;(16;32;64;72))
32

Restricted Whole Numbers

Many functions require as arguments whole numbers that are within the range of integer representation but
do not insist that the type of these arguments be integer. They also accept floating point numbers that are
tolerably equal to integers (see* Comparison Tolerance”, page 105) and numberswhose absolute valueisless
than 1e-13 . l.e, they regject floating point numbers that are significantly fractional or that are too large in
magnitude to be represented as integer type. Furthermore, they accept empty arrays regardless of type. For
convenience in this manual, the term restricted whole number is used for amember of the set consisting of
the integers, these floating point near-integers, and al empty arrays.

Since the functions that accept restricted whole number arguments use integersinternally, floating point val-
ues for these arguments involve a performance penalty, because of the implicit type conversion.

General Types

Many A+ functions and operators take arguments of several types, sometimes with some limitation, and itis
convenient to have aterminology dividing A+ data objectsinto three classes, asthey do. Inthismanual, these
classes are called general types. They are:
» character, consisting of ssimple arrays of characters
» numeric, consisting of simple arrays, unrestricted as to value, of
» floating point numbers
* integers
» mixed, containing all other data, namely
* simple arrays of
« functions
e symbols
« adl nested arrays
* box
« function
* symbol
Because general types are used mostly to indicate inclusion in the domains of functions and most functions
accept empty arrays of any type, all empty arraysareincluded in each general type. (Although acceptance of
empty arrays can cause anomalies like a character result for Add, such results are unlikely in fact to be cre-
ated; if they do arise, they will probably be accepted by any function to which they are presented. For

efficiency, the (empty) result of a mathematical function for a Null is whatever is most convenient for the
function: Null, integer, or floating point.)

A+ Language Reference November 2000 23

