
Defining Effect Methods for Other Models

John Fox and Sanford Weisberg

November 30, 2018

The effects package in R is designed primarily to draw graphs that visualize
a fitted response surface of a fitted model in problems with a linear predictor.
Many modeling paradigms that can be fit with base R or contributed packages
fit into this framework, including methods for linear, multivariate linear, and
generalized linear models fit by the standard lm and glm functions and by the
svyglm function in the survey package (Lumley, 2004); linear models fit by
generalized least squares using the gls function in the nlme package (Pinheiro
et al., 2016); multinomial regression models fit by multinom in the nnet package
(Venables and Ripley, 2002); ordinal regression models using polr from the
MASS package (Venables and Ripley, 2002) and clm and clm2 from the ordinal
package (Christensen, 2015); linear and generalized linear mixed models using
the lme function in the nlme package (Pinheiro et al., 2016) and the lmer and
glmer functions in the lme4 package (Bates et al., 2015); and latent class models
fit by poLCA in the poLCA package (Linzer and Lewis, 2011). This is hardly an
exhaustive list of fitting methods that are based on a linear predictor, and we
have been asked from time to time to write functions to use effects with this
other fitting methods. The mechanism for this is fairly simple. This vignette
assumes you are familiar with R’s S3 methods.

The default Effect.default may work with some modeling functions, as
would objects of the class gls that we describe below in Section 1, but as
illustrated in later sections you may need to modify some of the arguments that
are sent to Effect.default. .

The effect package has five functions that create the information needed for
drawing effects plots, Effect, allEffects, effect and predictorEffect and
predictorEffects. To add new modeling to the package only a new Effect

needs to be written; the package will take care of all the other functions.

1 Using effects with Other Modeling Methods, with
Generalized Least Squares in the nlme package as an
Example

Applying effects to other than lm and glm objects may require writing an
method for the Effect generic function for that type of model object. For

1

example, the gls function in the nlme package (Pinheiro et al., 2018) fits linear
models via generalized least squares. A call to gls creates an object of class gls.
The following method of Effect for gls objects finds the information needed
to draw effects plots from gls objects:

Effect.gls <- function(focal.predictors, mod, ...){

cl <- mod$call

cl$weights <- NULL

args <- list(

type = "glm",

call = cl,

formula = formula(mod),

family = NULL,

coefficients = coef(mod),

vcov = as.matrix(vcov(mod)),

method=NULL)

Effect.default(focal.predictors, mod, ..., sources=args)

}

This function simply harvests the needed information into a variable sources,
and then passes to the result to the default Effect method. The three required
arguments to the method are: focal.predictors and mod that match the first
two arguments of Effect.default, and ... that matches all other arguments.
The list sources has up to 6 named elements and is created in the function:

type The effects package has three basic modeling functions: type = "glm",
the default, is used for functions with a univariate response and a linear
predictor and possibly a link function. This class includes linear models,
generalized linear models, robust regression, generalized least squares fit-
ting, linear and generalized linear mixed effects models, and many others.
The type = "polr" is used for ordinal regression models, as in the polr

function in the MASS package, and similar methods described below in
Section 6. The The type = "multinom" for multinomial log-linear mod-
els as fit by the multinom function in nnet, and to polytomous latent class
models created with the poLCA function in the poLCA package.

call The Effect.default method uses the call to harvest additional argu-
ments that it needs. For type="glm", these arguments are formula,
data, contrasts, subset, family, weights, and offset, although only
the formula argument is required. The gls function includes an optional
weights argument that is used differently from the weights argument
for a generalized linear model and is not needed for computing effects or
predictor effects plots. In the function shown above the call is modified
by setting weights=NULL.

The default for call is mod$call for S3 objects and mod@call for S4
objects.

2

formula In most cases the formula for the linear predictor is returned by for-

mula(mod), the default, but if this is not the case the value of this argu-
ment should be the value of the formula for fixed effects.

family The default is family=NULL. This argument is required for GLM-like
models that include a family that specifies both an error distribution
and a link function only if family=family(mod) is not appropriate. See
the betareg example in Section 5 below for an example that includes a
user-selected link function, but a fixed error distribution.

coefficients In many cases the (fixed-effect) coefficient estimates are returned
by coef(mod), the default, but if this is not the case then the value of this
argument should be the estimates of the coefficients in the linear predictor.
The functions in the effects package do not use estimates of random
effects.

vcov In many cases the estimated covariance matrix of the (fixed-effect) coeffi-
cient estimates is returned by vcov(mod), the default, but if this is not the
case then the value of this argument should be the estimated covariance
matrix of the (fixed-effect) coefficient estimates in the linear predictor.

method This argument is used only for methods that use effects graphics based
on the polr function, where the argument method is the name of a link
function; see help(polr) for a list of the accepted links, and see Section 6.1
below for an example.

The only non-default argument in sources is the modification of the call to
omit weights in the call to gls. Without this change, there is no need to have
written the Effect.gls method, as the default method would have worked.

library(effects)

Loading required package: carData

lattice theme set by effectsTheme()

See ?effectsTheme for details.

require(nlme)

Loading required package: nlme

g <- gls(Employed ~ GNP + Population,

correlation=corAR1(form= ~ Year), data=longley)

plot(predictorEffects(g))

3

GNP predictor effect plot

GNP

E
m

p
lo

y
e
d

55

60

65

70

75

80

250 300 350 400 450 500 550

Population predictor effect plot

Population

E
m

p
lo

y
e
d

55

60

65

70

110 115 120 125 130

2 Mixed Effects with lme (nlme package)

The lme function in the nlme package (Pinheiro et al., 2018) fits linear mixed
models. The required function for fitted objects from this function is included
in the effects package. It is given by

print(Effect.lme)

function (focal.predictors, mod, ...)

{

args <- list(call = mod$call, formula = mod$call$fixed, coefficients = mod$coefficients$

vcov = mod$varFixed)

Effect.default(focal.predictors, mod, ..., sources = args)

}

<bytecode: 0x7f985cd6e5f0>

<environment: namespace:effects>

The formula, coefficients and vcov arguments are set to non-default values.
The other arguments are automatically set to default values.

data(Orthodont, package="nlme")

m1 <- nlme::lme(distance ~ age + Sex, data=Orthodont,

random= ~ 1 | Subject)

as.data.frame(Effect("age", m1))

age fit se lower upper

1 8.0 22.04259 0.4172841 21.21520 22.86999

2 9.5 23.03287 0.3853671 22.26876 23.79698

3 11.0 24.02315 0.3741236 23.28133 24.76497

4 12.0 24.68333 0.3791619 23.93153 25.43514

5 14.0 26.00370 0.4172841 25.17631 26.83110

4

3 Mixed Effects with the lmer (lme4 package)

The lme4 package (Bates et al., 2015) fits linear and generalized linear mixed ef-
fects models with the lmer and glmer functions, respectively. The same Effect
function can be used for lmer and glmer models.

The following method is a little more complicated because it contains an
additional argument KR to determine if the Kenward-Roger coefficient covariance
matrix is to be used to compute effect standard errors. The default is FALSE

because the computation is very slow. If KR = TRUE, the function also checks if
the pbkrtest package is present.

print(Effect.merMod)

function (focal.predictors, mod, ..., KR = FALSE)

{

if (KR && !requireNamespace("pbkrtest", quietly = TRUE)) {

KR <- FALSE

warning("pbkrtest is not available, KR set to FALSE")

}

fam <- family(mod)

args <- list(call = mod@call, coefficients = lme4::fixef(mod),

family = fam, vcov = if (fam$family == "gaussian" &&

fam$link == "identity" && KR) as.matrix(pbkrtest::vcovAdj(mod)) else as.matrix(v

Effect.default(focal.predictors, mod, ..., sources = args)

}

<bytecode: 0x7f985a63d2c0>

<environment: namespace:effects>

Because lmer is an S4 object, the default for call is mod@call, and this argu-
ment would have been set automatically had we not included it in the above
method. The fixed-effect estimates for an object created by a call to lmer

or glimer are not returned by coef(mod), so the value of coefficients is the
value returned by lme4::fixef(mod). The vcov estimate contains its estimated
variance covariance matrix of the fixed effects. The Kenward-Roger method is
used to estimate the covariance matrix for linear models if the additional argu-
ment KR=TRUE. The default is KR=FALSE because The Kenward-Roger estimate
requires a long computation; see help(Effect).

The formula for a mixed-effects model in the lme4 package specifies linear
predictors for both the mean function and the variance functions, specified by,
for example (1 + age | Subject). The effects code will automatically re-
move any terms like these in any formula, as the effects package only displays
the mean function.

fm2 <- lme4::lmer(distance ~ age + Sex + (1 |Subject), data

= Orthodont)

plot(allEffects(fm2))

5

age effect plot

age

d
is

ta
n
c
e

22

23

24

25

26

 8 9 10 11 12 13 14

Sex effect plot

Sex

d
is

ta
n
c
e

22

23

24

25

26

Male Female

●

●

data(cbpp, package="lme4")

gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)

as.data.frame(predictorEffect("period", gm1))

period fit se lower upper

1 1 0.19807921 0.03672693 0.13569522 0.2798569

2 2 0.08391784 0.02363110 0.04775453 0.1433443

3 3 0.07401714 0.02241762 0.04040242 0.1317591

4 4 0.04842565 0.01959184 0.02163871 0.1048199

4 Robust Linear Mixed Models (robustlmm pack-
age)

The rlmer function in the robustlmm package (Koller, 2016) fits linear mixed
models with a robust estimation method. As rlmer closely parallels the lmer

function, an object created by rlmer is easily used with effects:

print(Effect.rlmerMod)

function (focal.predictors, mod, ...)

{

args <- list(coefficients = lme4::fixef(mod), family = family(mod))

Effect.default(focal.predictors, mod, ..., sources = args)

}

<bytecode: 0x7f985af1c820>

<environment: namespace:effects>

require(lme4)

fm3 <- robustlmm::rlmer(distance ~ age * Sex + (1 |Subject),

data = Orthodont)

plot(predictorEffects(fm3))

6

5 Beta Regression

The betareg function in the betareg package (Grün et al., 2012) fits regressions
with a link function but with Beta distributed errors.

print(Effect.betareg)

function (focal.predictors, mod, ...)

{

coef <- mod$coefficients$mean

vco <- vcov(mod)[1:length(coef), 1:length(coef)]

fam <- binomial(link = mod$link$mean)

fam$variance <- function(mu) {

f0 <- function(mu, eta) (1 - mu) * mu/(1 + eta)

do.call("f0", list(mu, mod$coefficient$precision))

}

fam$initialize <- expression({

mustart <- y

})

args <- list(call = mod$call, formula = formula(mod), family = fam,

coefficients = coef, vcov = vco)

Effect.default(focal.predictors, mod, ..., sources = args)

}

<bytecode: 0x7f985b2c5bc8>

<environment: namespace:effects>

Beta regression has a response y ∈ [0, 1], with the connection between the mean
µ of the Beta and a set for predictors x through a link function x

′β = g(µ).
The variance function for the beta is var(y) = µ(1− µ)/(1 + φ), for a precision
parameter φ estimated by betareg.

The call to betareg does not have a family argument, although it does have
a link stored in mod$link$mean. For use with Effect.default, the method
above creates a family from the binomial family generator. It then adjusts
this family by changing from binomial variance to the variance for the beta
distribution. Since the glm function expects a variance that is a function of
only one parameter, we fix the value of the precision φ at its estimator from
the betareg fit, as shown in the method. We need to replace the initialize

method in the family to one appropriate for y ∈ [0, 1].

require(betareg)

Loading required package: betareg

require(lme4)

data("GasolineYield", package = "betareg")

gy_logit <- betareg(yield ~ batch + temp, data = GasolineYield)

summary(gy_logit)

7

Call:

betareg(formula = yield ~ batch + temp, data = GasolineYield)

Standardized weighted residuals 2:

Min 1Q Median 3Q Max

-2.8750 -0.8149 0.1601 0.8384 2.0483

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.1595710 0.1823247 -33.784 < 2e-16

batch1 1.7277289 0.1012294 17.067 < 2e-16

batch2 1.3225969 0.1179020 11.218 < 2e-16

batch3 1.5723099 0.1161045 13.542 < 2e-16

batch4 1.0597141 0.1023598 10.353 < 2e-16

batch5 1.1337518 0.1035232 10.952 < 2e-16

batch6 1.0401618 0.1060365 9.809 < 2e-16

batch7 0.5436922 0.1091275 4.982 0.000000629

batch8 0.4959007 0.1089257 4.553 0.000005297

batch9 0.3857930 0.1185933 3.253 0.00114

temp 0.0109669 0.0004126 26.577 < 2e-16

Phi coefficients (precision model with identity link):

Estimate Std. Error z value Pr(>|z|)

(phi) 440.3 110.0 4.002 0.0000629

Type of estimator: ML (maximum likelihood)

Log-likelihood: 84.8 on 12 Df

Pseudo R-squared: 0.9617

Number of iterations: 51 (BFGS) + 3 (Fisher scoring)

plot(predictorEffects(gy_logit))

batch predictor effect plot

batch

y
ie

ld

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10

●

●

●

●
●

●

●
●

●

●

temp predictor effect plot

temp

y
ie

ld

0.1

0.2

0.3

0.4

200 250 300 350 400

8

6 Ordinal Models (ordinal package)

Proportional odds logit and probit regression models fit with the polr function
in the MASS package (Venables and Ripley, 2002) are supported in the effects
package. The ordinal package, (Christensen, 2015) contains three functions
that are very similar to polr. The clm and clm2 functions allow more link
functions and a number of other generalizations. The clmm function allows
including random effects.

6.1 clm

print(Effect.clm)

function (focal.predictors, mod, ...)

{

if (requireNamespace("MASS", quietly = TRUE)) {

polr <- MASS::polr

}

else stop("MASS package is required")

polr.methods <- c("logistic", "probit", "loglog", "cloglog",

"cauchit")

method <- mod$link

if (method == "logit")

method <- "logistic"

if (!(method %in% polr.methods))

stop("'link' must be a 'method' supported by polr; see help(polr)")

if (mod$threshold != "flexible")

stop("Effects only supports the 'flexible' threshold")

if (is.null(mod$Hessian)) {

message("\nRe-fitting to get Hessian\n")

mod <- update(mod, Hess = TRUE)

}

numTheta <- length(mod$Theta)

numBeta <- length(mod$beta)

or <- c((numTheta + 1):(numTheta + numBeta), 1:(numTheta))

args <- list(type = "polr", coefficients = mod$beta, method = method,

vcov = as.matrix(vcov(mod)[or, or]))

Effect.default(focal.predictors, mod, ..., sources = args)

}

<bytecode: 0x7f98426ad550>

<environment: namespace:effects>

This method first checks that the MASS package is available. Since the clm

function allows suppressing the computation of the Hessian, the function checks
and computes it if needed to get the estimated covariance matrix. The clm func-
tion orders the parameters in the order (threshold parameters, linear predictor

9

parameters), so the next few lines identify the elements of vcov that are needed
by Effects. Since the polr function does not allow thresholds other than flex-

ible, we don’t allow them either. The polr argument method is equivalent to
the clm argument link, except that the clm link "logit" is equivalen to the
polr method "logit"logistic".

require(ordinal)

require(MASS)

mod.wvs1 <- clm(poverty ~ gender + religion + degree + country*poly(age,3),

data=WVS)

plot(Effect(c("country", "age"), mod.wvs1),

lines=list(multiline=TRUE), layout=c(2, 2))

country*age effect plot

age

p
o
ve

rt
y
 (

p
ro

b
a

b
ili

ty
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20 30 40 50 60 70 80 90

 = country Australia = country Norway

 = country Sweden

20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 = country USA

poverty
Too Little
About Right

Too Much

6.2 clm2

Although the fitted madels are similar, syntax for clm2 is not the same as clm,
so a separate method is required.

print(Effect.clm2)

function (focal.predictors, mod, ...)

{

if (requireNamespace("MASS", quietly = TRUE)) {

10

polr <- MASS::polr

}

polr.methods <- c("logistic", "probit", "loglog", "cloglog",

"cauchit")

method <- mod$link

if (!(method %in% polr.methods))

stop("'link' must be a 'method' supported by polr; see help(polr)")

if (is.null(mod$Hessian)) {

message("\nRe-fitting to get Hessian\n")

mod <- update(mod, Hess = TRUE)

}

if (mod$threshold != "flexible")

stop("Effects only supports the flexible threshold")

numTheta <- length(mod$Theta)

numBeta <- length(mod$beta)

or <- c((numTheta + 1):(numTheta + numBeta), 1:(numTheta))

args <- list(type = "polr", formula = mod$call$location,

coefficients = mod$beta, method = method, vcov = as.matrix(vcov(mod)[or,

or]))

Effect.default(focal.predictors, mod, ..., sources = args)

}

<bytecode: 0x7f9852ebbf70>

<environment: namespace:effects>

v2 <- clm2(poverty ~ gender + religion + degree + country*poly(age,3),data=WVS)

plot(emod2 <- Effect(c("country", "age"), v2),

lines=list(multiline=TRUE), layout=c(2,2))

country*age effect plot

age

p
o
ve

rt
y
 (

p
ro

b
a

b
ili

ty
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20 30 40 50 60 70 80 90

 = country Australia = country Norway

 = country Sweden

20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 = country USA

poverty
Too Little
About Right

Too Much

11

6.3 clmm

This function allows for random effects in an ordinal model.

print(Effect.clmm)

function (focal.predictors, mod, ...)

{

if (requireNamespace("MASS", quietly = TRUE)) {

polr <- MASS::polr

}

else stop("The MASS package must be installed")

polr.methods <- c("logistic", "probit", "loglog", "cloglog",

"cauchit")

method <- mod$link

if (method == "logit")

method <- "logistic"

if (!(method %in% polr.methods))

stop("'link' must be a 'method' supported by polr; see help(polr)")

if (is.null(mod$Hessian)) {

message("\nRe-fitting to get Hessian\n")

mod <- update(mod, Hess = TRUE)

}

if (mod$threshold != "flexible")

stop("Only threshold='flexible supported by Effects")

numTheta <- length(mod$Theta)

numBeta <- length(mod$beta)

or <- c((numTheta + 1):(numTheta + numBeta), 1:(numTheta))

Vcov <- as.matrix(vcov(mod)[or, or])

args <- list(type = "polr", formula = formula(mod), coefficients = mod$beta,

method = method, vcov = as.matrix(Vcov))

Effect.default(focal.predictors, mod, ..., sources = args)

}

<bytecode: 0x7f985f0c62a8>

<environment: namespace:effects>

The first few lines of the method check for the presence of the MASS package
that is needed to use polr, makes sure the link used is supported by polr, and
requires that the argument threshold has its default value. The polr and clmm

functions store the fixed effects estimates of regression and threshold coefficents
in different orders, so the next few lines rearrange the variance matrix to match
the order that polr uses.

require(ordinal)

require(MASS)

mm1 <- clmm(SURENESS ~ PROD + (1|RESP) + (1|RESP:PROD),

data = soup, link = "logit", threshold = "flexible")

plot(Effect("PROD", mm1),lines=list(multiline=TRUE))

12

PROD effect plot

PROD

S
U

R
E

N
E

S
S

 (
p

ro
b

a
b

ili
ty

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ref Test

●

●

●

●

●

●

●

●

●

●

●

●

SURENESS
1
2
3

4
5
6

●

●

●

●

●

●

6.4 Others

The poLCA function in the poLCA package (Linzer and Lewis, 2011) fits polyto-
mous variable latent class models, which uses the multinomial effects plots.

The svyglm function in the survey package (Lumley, 2004, 2016) fits gen-
eralized linear models using survey weights.

The lm function can also be used to create a multivariate linear model. The
Effect.mlm function, with slightly different syntax, will drow effects plots for
these models, with separate plots of each response.

data(Baumann, package="carData")

b1 <- lm(cbind(post.test.1, post.test.2, post.test.3) ~ group +

pretest.1 + pretest.2, data = Baumann)

plot(Effect("group", b1))

13

group effect plot

group

p
o

s
t.
te

s
t.
1

 6

 7

 8

 9

10

Basal DRTA Strat

●

●

●

group effect plot

group

p
o

s
t.
te

s
t.
2

5

6

7

8

9

Basal DRTA Strat

●

●

●

group effect plot

group

p
o

s
t.

te
s
t.

3

40

42

44

46

48

Basal DRTA Strat

●

●

●

References

Bates, D., M. Mächler, B. Bolker, and S. Walker (2015). Fitting linear mixed-
effects models using lme4. Journal of Statistical Software 67 (1), 1–48.

Christensen, R. H. B. (2015). ordinal—Regression Models for Ordinal Data.
R package version 2015.6-28.

Grün, B., I. Kosmidis, and A. Zeileis (2012). Extended beta regression in
R: Shaken, stirred, mixed, and partitioned. Journal of Statistical Soft-

ware 48 (11), 1–25.

Koller, M. (2016). robustlmm: An R package for robust estimation of linear
mixed-effects models. Journal of Statistical Software 75 (6), 1–24.

Linzer, D. A. and J. B. Lewis (2011). poLCA: An˚package for polytomous
variable latent class analysis. Journal of Statistical Software 42 (10), 1–29.

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical

Software 9 (1), 1–19. R package version 2.2.

Lumley, T. (2016). survey: analysis of complex survey samples. R package
version 3.32.

14

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team (2016). nlme:
Linear and Nonlinear Mixed Effects Models. R package version 3.1-127.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team (2018). nlme:

Linear and Nonlinear Mixed Effects Models. R package version 3.1-137.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S (4th
ed.). New York: Springer-Verlag.

15

	Using 45effects with Other Modeling Methods, with Generalized Least Squares in the 45nlme package as an Example
	Mixed Effects with 45lme (45nlme package)
	Mixed Effects with the 45lmer (45lme4 package)
	Robust Linear Mixed Models (45robustlmm package)
	Beta Regression
	Ordinal Models (45ordinal package)
	45clm
	45clm2
	45clmm
	Others

